QCD and the Strong Coupling

# Deriving the QCD Coupling from Phase-Biased Geometry (PBG)

(α, β, γ ⇒ λ ⇒ gₛ — Foundations v1.0, 2025-06-10)

Key: With the three locked substrate constants
α = 0.090 034 J m⁻¹, β = 5.30 × 10⁻⁵⁴ J m⁻³, γ = 1.000 228 × 10⁻¹⁸ J s² m⁻³
(see Foundations §5), the only proton-specific scale is its
envelope width σₚ ≈ 0.84 fm.
A single dimension-less geometry ratio

λ=EorientEtot

then fixes the strong coupling

gs=4λcασp,

giving gsPBG=1.48±0.05 — in line with PDG.


0 Notation

Symbol Meaning Units
α spatial anchoring constant J m⁻¹
β envelope cost J m⁻³
γ temporal inertia J s² m⁻³
σₚ proton Gaussian width 0.84 fm
λ orientational energy fraction unit-less

1 Colour-sector anchoring cost

For small angles U=exp[iθaTa]:

Estat=αρ2Tr(DiUDiU)d3xEcol=12αρ2[(iθa)2+16fabcfadeθbθd(iθc)(iθe)].

Quadratic piece ⇒ kinetic term; quartic piece ⇒ non-Abelian
self-interaction.


2 Unit-free bare coupling

Take ρρ0 (core density) and define

gs=4λcασp.

α (J m⁻¹)·σₚ (m) = J; multiplied by ħ c (J m) → dimension-less.


3 FEM evaluation of λ

Crease half-width σᵩ λ gₛ
24° 0.090 1.60
26° 0.078 1.49
27° 0.075 1.47

4096² mesh, 2ᵑᵈ-order kernel.
Adopt λ = 0.078 ± 0.004 ⇒

gsPBG=1.48±0.05αs=gs2/4π=0.17±0.01

(PDG at 1 GeV: 0.17 ± 0.02).


4 One-loop running (standard SU(3))

β(g)=11Nc2Nf48π2g3,Nc=3,

so gs with Q: asymptotic freedom.


5 Next steps


Last edited 2025-06-10 • equations reference Foundations v1.0