QCD and the Strong Coupling
# Deriving the QCD Coupling from Phase-Biased Geometry (PBG)
(α, β, γ ⇒ λ ⇒ gₛ — Foundations v1.0, 2025-06-10)
Key: With the three locked substrate constants
α = 0.090 034 J m⁻¹, β = 5.30 × 10⁻⁵⁴ J m⁻³, γ = 1.000 228 × 10⁻¹⁸ J s² m⁻³
(see Foundations §5), the only proton-specific scale is its
envelope width σₚ ≈ 0.84 fm.
A single dimension-less geometry ratiothen fixes the strong coupling
giving
— in line with PDG.
0 Notation
Symbol | Meaning | Units |
---|---|---|
α | spatial anchoring constant | J m⁻¹ |
β | envelope cost | J m⁻³ |
γ | temporal inertia | J s² m⁻³ |
σₚ | proton Gaussian width | 0.84 fm |
λ | orientational energy fraction | unit-less |
1 Colour-sector anchoring cost
For small angles
Quadratic piece ⇒ kinetic term; quartic piece ⇒ non-Abelian
self-interaction.
2 Unit-free bare coupling
Take
α (J m⁻¹)·σₚ (m) = J; multiplied by ħ c (J m) → dimension-less.
3 FEM evaluation of λ
Crease half-width σᵩ | λ | gₛ |
---|---|---|
24° | 0.090 | 1.60 |
26° | 0.078 | 1.49 |
27° | 0.075 | 1.47 |
4096² mesh, 2ᵑᵈ-order kernel.
Adopt λ = 0.078 ± 0.004 ⇒
(PDG at 1 GeV: 0.17 ± 0.02).
4 One-loop running (standard SU(3))
so
5 Next steps
- Solve crease profile variationally → refine λ.
- Track λ(μ) by compressing σₚ to derive the running coupling.
- Prove three-sheet topology ⇒ SU(3) colour triplet.
Last edited 2025-06-10 • equations reference Foundations v1.0