Proton & Neutron Magnetic Radii
Magnetic RMS Radii of Proton & Neutron in PBG
( • Foundations v1.0 • 2025-06-10)
Summary. Using the triple-winding coherence core plus one
Pauli-torsion “sheet” (no new constants), Phase-Biased Geometry predictsmatching the PDG values
fm and fm.
0 Locked constants
Symbol | Definition | Value | Units | Source | |
---|---|---|---|---|---|
spatial stiffness | 0.090 034 | J m⁻¹ | Foundations §5 | ||
envelope cost | 5.30 × 10⁻⁵⁴ | J m⁻³ | Foundations §5 | ||
temporal inertia | 1.000 228 × 10⁻¹⁸ | J s² m⁻³ | Foundations §5 | ||
2.997 924 58 × 10⁸ | m s⁻¹ | Foundations §0 | |||
197.327 | MeV fm | CODATA | |||
proton mass | 938.272 | MeV |
PDG | ||
neutron mass | 939.565 | MeV |
PDG | ||
1.792 847 | — | PDG | |||
–1.913 043 | — | PDG |
Uncertainty on
1 Coherence-core (Dirac) radius
The Gaussian envelope width derived in
3-D Envelope Implementation is
We identify
(The error reflects the 0.3 % uncertainty in α & β.)
2 Pauli torsion sheet
The anomalous magnetic moment adds a thin torsional layer.
Its centroid shift is
Numbers:
| Baryon |
|--------|-----------:|-----------------:|
| p | 1.792 847 | 0.244 |
| n | 1.913 043 | 0.260 |
Units:
3 Two-layer magnetic form factor
Following Magnetic-Moment Structures, write
with
Magnetic RMS radius:
4 Predictions
Baryon | PDG 2024 | ||||
---|---|---|---|---|---|
p | 0.832 | 0.244 | 0.64 | 0.869 ± 0.004 | 0.87 ± 0.02 |
n | 0.832 | 0.260 | 0.66 | 0.872 ± 0.005 | 0.87 ± 0.03 |
Errors propagate the 0.3 % anchor spread plus 0.1 % numerical integration
uncertainty.
5 Why this is parameter-free
comes from the same envelope width that
fixed the charge radius.depends only on the empirical , already used in the
-factor match. - No adjustable layer thickness or ad-hoc dipole cut-off is introduced.
6 Next-generation tests
Facility | Target precision | PBG test |
---|---|---|
JLab 12 GeV global fit | ±1 % on |
|
Lattice QCD isodoublet | ±3 % | verifies two-layer slope |
Last audited 2025-06-10 • SI-unit proof inside; cites Foundations v1.0