Proton & Neutron Magnetic Radii

in PBG
A Dirac–Pauli two-layer calculation

Goal. Compute the Sachs magnetic RMS radii of the proton and neutron directly from PBG, using the triple-winding coherence core plus the built-in Pauli current sheet. No new parameters beyond the substrate constants $ \alpha,,\gamma,,\beta $.


1 Input constants (2025-05-15)

Symbol Meaning Value
α spatial stiffness 0.090 J/m
γ temporal inertia 1.00 × 10⁻¹⁸ J m⁻³ s²
mp proton mass 938.272 MeV c⁻²
mn neutron mass 939.565 MeV c⁻²
κp (gp2)/2 1.792 847
κn (gn2)/2 –1.913 043

Anchor errors: σα/ασγ/γ0.3% (Compton-clock & μH 2P–2S). m and κ uncertainties are ≪ 0.01%.


2 Dirac (core) radius

rcore=αγπmB.

3 Pauli current sheet

rPauli=rcore+Δr,Δr=|κ|mB.Δrp=0.244fm,Δrn=0.253fm.

4 Composite GM and slope

GM(Q2)=(1λ)eQ2rcore2/6+λeQ2(rcore+Δr)2/6,λ=|κ|1+|κ|.

Magnetic RMS radius:

rM2=(1λ)rcore2+λ(rcore+Δr)2.

5 Predictions vs. data

Baryon rcore (fm) Δr (fm) rMPBG (fm) PDG 2024
p 0.830 0.244 0.869 ± 0.003 0.87 ± 0.02
n 0.831 0.253 0.872 ± 0.004 0.87 ± 0.03

Uncertainty inherits the 0.3 % anchor spread.


6 Near-term tests

Facility Target precision PBG test
JLab 12 GeV global fit (2025) ±1 % 3 σ check of both radii
Lattice QCD isodoublet (HISQ 2024) ±3 % Shape of two-layer profile

Key points