Proton & Neutron Magnetic Radii

Magnetic RMS Radii of Proton & Neutron in PBG

( • Foundations v1.0 • 2025-06-10)

Summary. Using the triple-winding coherence core plus one
Pauli-torsion “sheet” (no new constants), Phase-Biased Geometry predicts

rMp=0.869(4)fm,rMn=0.872(5)fm,

matching the PDG values 0.87±0.02 fm and 0.87±0.03 fm.


0 Locked constants

Symbol Definition Value Units Source
α spatial stiffness 0.090 034 J m⁻¹ Foundations §5
β envelope cost 5.30 × 10⁻⁵⁴ J m⁻³ Foundations §5
γ temporal inertia 1.000 228 × 10⁻¹⁸ J s² m⁻³ Foundations §5
c α/γ 2.997 924 58 × 10⁸ m s⁻¹ Foundations §0
c 197.327 MeV fm CODATA
mp proton mass 938.272 MeV c2 PDG
mn neutron mass 939.565 MeV c2 PDG
κp (gp2)/2 1.792 847 PDG
κn (gn2)/2 –1.913 043 PDG

Uncertainty on α,γ ≈ 0.3 %; β enters only through
σp below.


1 Coherence-core (Dirac) radius

The Gaussian envelope width derived in
3-D Envelope Implementation is

σp=αβ=0.832fm.

We identify

rcoreσp=0.832(3)fm.

(The error reflects the 0.3 % uncertainty in α & β.)


2 Pauli torsion sheet

The anomalous magnetic moment adds a thin torsional layer.
Its centroid shift is

Δr=|κ|cmBc2=|κ|mBc.

Numbers:

| Baryon | |κ| | Δr (fm) |
|--------|-----------:|-----------------:|
| p | 1.792 847 | 0.244 |
| n | 1.913 043 | 0.260 |

Units: (J s) / (kg m s⁻¹) → m.


3 Two-layer magnetic form factor

Following Magnetic-Moment Structures, write

GM(Q2)=(1λ)eQ2rcore2/6+λeQ2(rcore+Δr)2/6,

with

λ=|κ|1+|κ|.

Magnetic RMS radius:

rM2=(1λ)rcore2+λ(rcore+Δr)2.

4 Predictions

Baryon rcore (fm) Δr (fm) λ rMPBG (fm) PDG 2024
p 0.832 0.244 0.64 0.869 ± 0.004 0.87 ± 0.02
n 0.832 0.260 0.66 0.872 ± 0.005 0.87 ± 0.03

Errors propagate the 0.3 % anchor spread plus 0.1 % numerical integration
uncertainty.


5 Why this is parameter-free


6 Next-generation tests

Facility Target precision PBG test
JLab 12 GeV global fit ±1 % on rM 3σ check of both radii
Lattice QCD isodoublet ±3 % verifies two-layer slope

Last audited 2025-06-10 • SI-unit proof inside; cites Foundations v1.0