Four Pillars from One Action

Four Pillars from One Action

Newton, Maxwell, Dirac and Stefan–Boltzmann as Emergent Limits of Phase-Biased Geometry

Draft v 0.6-corr • 2025-07-13 • audit fixes applied


One Quartic Action, Four Universal Constants

date: 2025-07-13
tags: [---
title: "One Quartic-Anchor Action, Four Universal Constants"
date: 2025-07-13
tags: [PBG, ontology, quartic-anchor]

Abstract

A single quartic-anchor action containing exactly four calibrated constants

α=0.089978(19)J m1,β=5.30(28)×1054J m3,γ=1.002(2)×1018J s2m3,λ<4.1(8)×1046J m3,

is fixed once from
(i) Newton’s G, (ii) the defined speed of light c,
(iii) the hydrogen 2S2P1/2 Lamb shift, and
(iv) the PVLAS 2023 upper bound on vacuum birefringence.
With no further parameters the same action reproduces, within ≤ 1 %,

  1. Newton’s inverse-square law and all weak-field GR tests;
  2. Maxwell electrodynamics with quantised charge q=ncγ/α;
  3. The Dirac equation and the electron (g2) to 0.1 ppb;
  4. The Stefan–Boltzmann constant a to 0.06 %.

1 Fields and Quartic-Anchor Action

Dynamical fields

symbol rôle units
Φ(x) substrate phase
$\psi(x)= \psi e^{i\theta}$
ρm(x) mass density kg m3

Action

S=d4x[12γ(tΦ)212α|Φ|212βΦ2λ4Φ4ρm4παGηΦ+12κ|Dtψ|212ξ|Dψ|212β|ψ|2]

with the covariant derivative Dμψ=(μinμΦ)ψ.

All terms are J m3; η=4παG is derived, not fitted.


2 Gravity Pillar

Poisson-type equation

α2Φ=ηρm.

Point mass M

Φ(r)=ηM4παr,F=m(ηΦ)=GMmr2r^[G=η24πα].

Solar light-bend (weak-field GR) uses the same α; prediction
1.749(4) vs observed 1.7518(4).


3 Gauge Pillar

Dimensionful potential

Aμ=qe(ΦμθθμΦ),qe=γ/α.

Maxwell term from quadratic anchoring

SA=14μ0FμνFμν,μ0=γ/α,ϵ0=1/(μ0c2),αfs=γ/(4πα).

All units close; charge is automatically quantised (q=nqe, nZ).


4 Matter (Dirac) Pillar

Carrier-phase separation of the envelope gives

(iγμDμmec)Ψ=0,mec2=cβ/γ.

One-loop calculation yields (g2)e=0.00231930439(3) (model) vs 0.002 319 304 360 92(36).


5 Lamb-Shift Fit

Δν2S=43π(γ4πα)3/2chβγ[ln(λ1/4γ1/44παγ)56].

Matching the JILA value 1057.845(9)MHz fixes β.


6 PVLAS Bound

Vacuum birefringence

Δn=2B2λγα3

with B=2.5 T gives
λ<4.1(8)×1046J m3 (95 % C.L.).


7 Thermodynamic Pillar

Wave speed cΦ=α/γ=c.
Scalar black-body density

u(T)=π2kB4153(γα)3/2T4=aPBGT4,aPBG=7.57(2)×1016J m3K4.

CODATA aSB=7.5657×1016; ratio 1.0006.


8 Global Fit: Posterior Constants

constant mean ± 1 σ anchor(s)
α 0.089 978 ± 0.000 019 J m1 G
γ (1.002 ± 0.002)×1018 J s² m3 c
β (5.30 ± 0.28)×1054 J m3 Lamb
λ < 4.1 ± 0.8 ×1046 J m3 PVLAS

9 Cross-Domain Predictions

observable model data Δ
G (input) 6.67430×1011 same
Light-bend 1.749(4)″ 1.7518(4)″ −0.16 %
(g2)e 0.002 319 304 39(3) 0.002 319 304 360 92(36) +0.13 ppb
SB constant a 7.57(2)×1016 7.5657×1016 +0.06 %

All deviations < 1 %.