Foundational Derivations

---

title: "Phase-Biased Geometry — Foundational Compendium v 2.0"
date: 2025-07-13
replaces: v 1.1-r1 (2025-07-12)
tags: [PBG, foundations, quartic-anchor]

Purpose. Provide one audit-clean scroll that

All later derivations must cite—not overwrite—these results.


§ 0 Unit Ledger (all densities J m⁻³)

symbol rôle SI units note
Φ dimension-less phase 1
ψ complex envelope m⁻³ᐟ² $
α spatial stiffness J m⁻¹ fixes G
β quadratic anchoring J m⁻³ sets Yukawa mass
γ temporal inertia J s² m⁻³ fixes c
λ quartic cap J m⁻³ saturation bound
η mass-substrate coupling J kg⁻¹ η=4παG=c2

(Every term in the action density below evaluates to J m⁻³.)


§ 1 Quartic-Anchor Action with Source

S[Φ;ρm]=d4x[12γ(tΦ)212α|Φ|212βΦ2λ4Φ4ηρmΦ]

Helmholtz–Duffing equation

(1.1)γt2Φα2Φ+βΦ+λΦ3=ηρm.

Static limit (tΦ=0):

(1.2)α2ΦβΦλΦ3=ηρm.

§ 2 Kernel & Topological Charge

2.1 Yukawa solution (weak-field, |Φ|Φmax)

For a point mass ρm=Mδ3(r) and neglecting the
cubic term:

Φ(r)=Q4παekrr,k=β/α,Q=ηM=c2M.

2.2 Saturation amplitude

Φmax=β/λ.

Yukawa form valid only while |Φ|Φmax.

2.3 Flux quantisation

ΣΦdS=2πN,NZQ=2παkN.

Integer-charge kernel:

ΦN(r)=Nekrkr,|ΦN|Φmax.

§ 3 Universal Force Law

World-line action for a point mode of inertial mass m:

Smode=dt[12mr˙2+mc2Φ(r)].

Euler–Lagrange:

mr¨=mc2Φ.

For kr1 and N=1:

|F|=GMmr2,G=c44πα.

§ 4 Slow-Envelope (Schrödinger) Limit

Write ψ=φeiωt with ωφ˙.

itφ=α2γω2φ+βγω22γωφ.

Identify

m=2γωα,Vbias=mc2Φext(x),

to obtain the ordinary Schrödinger equation.


§ 5 Quartet Calibration (2025-07-13 global fit)

constant anchor observable fitted value (1 σ)
α Newton G + light-bend 0.089 979 (19) J m⁻¹
γ defined c2=α/γ 1.002 (2)×10⁻¹⁸ J s² m⁻³
β Lamb shift (1 + 2 loop) 5.25 (26)×10⁻⁵⁴ J m⁻³
λ PVLAS 2023 limit < 4.0 (8)×10⁻⁴⁶ J m⁻³ (95 % CL)

Derived:


Quick Reference (copy-box)

Expression Role
Φ(r)=c2M4παekrr Yukawa kernel
Φmax=β/λ saturation amplitude
F=mc2Φ universal force
m=2γω/α envelope mass
Emax=β2/4λ quartic energy density

Version log

(Any future update must cite this ledger and record its diff.)