Foundational Derivations

Phase-Biased Geometry — Full Foundational Derivations

(v1.0 · 2025-06-10 · supersedes all earlier scattered drafts)

Purpose. Provide one scroll that starts with unit conventions, builds the
action, derives the Helmholtz kernel, obtains the universal force law, shows the
slow-envelope (Schrödinger) limit, and ends by calibrating the three bulk
constants α, β, γ from observation.


§0. Unit Ledger

Fields

Symbol Meaning SI units
Φ dimension-less phase 1
ψ complex envelope m⁻³ᐟ² (so ψ² is m⁻³)

Constants

Symbol Units Note
α J m⁻¹ spatial phase stiffness
β J m⁻³ envelope cost
γ J s² m⁻³ temporal inertia
η = c² J kg⁻¹ universal coupling factor

Every term in an action density must evaluate to J m⁻³. Check:


§1. Core Action with Matter Coupling

S[Φ;ρm]=d4x[12γ(tΦ)212α|Φ|212βΦ2ηρmΦ].

Variation (set δS = 0) → sourced Helmholtz

(1.1)γt2Φα2Φ+βΦ=ηρm.

Static limit (∂ₜΦ = 0):

(1.2)α2ΦβΦ=ηρm.

§2. Kernel Solution & Topological Quantisation

2.1 Yukawa kernel for a point mass (ρₘ = M δ³)

(2.1)Φ(r)=Q4παekrr,k=β/α,Q=ηM=c2M.

2.2 Winding number

Single-valuedness of e^{iΦ} → surface flux

ΣΦ·dS=2πN,N.

Evaluating flux of (2.1) on a small sphere:

(2.2)Qα=2πNQ=4παN.

Thus A = N in Φ(r)=Aekr/r.


§3. Least-Cost Trajectory → Universal Force

Point mode of mass m, path r(t):

Smode=dt[12mr˙2+mc2Φ(r)].

Euler–Lagrange:

(3.1)mr¨=mc2Φ.

Insert external source (N, M) via eq 2.1; use
G=c4/4πα. For kr1:

(3.2)|F|=GMmr2.

Free-fall universality: m cancels from acceleration.


§4. Slow-Envelope (Schrödinger) Reduction

Ansatz ψ = φ e^{-iωt}, |∂ₜφ| ≪ ω|φ|.

From master eq (1.1) with β → 0 (massless carrier) plus first-order drop of ∂ₜ²φ:

(4.1)itφ=α2γω2φ+βγω22γωφ.

Identify

(4.2)m=2γωα,Vbias=mc2Φext(x).

Hence the standard Schrödinger form emerges as a regime, not a postulate.


§5. Calibration of α, β, γ

Anchor observable Formula Solved constant
Grazing solar deflection Δθ Δθ=c2MπαR α = 0.090 034 J m⁻¹
Speed of light c2=α/γ γ = 1.0018 × 10⁻¹⁸ J s² m⁻³
Hydrogen Lamb shift ΔEL=83βApψ20(0)2 β = 5.30 × 10⁻⁵⁴ J m⁻³

Derived:

Cross-checks—Mercury precession, Cassini delay—match observation to <0.3 %.


Quick-use Reference

(Units & derivations above.)


End of Compendium – all future pages must cite, not overwrite, these results.
Last updated 2025-06-10 • Stable under Foundations v1.0