Proton -Electron Mass Ratio

Proton / Electron Mass Ratio from PBG Spinor-Bag Dynamics

(concept draft · 30 Jun 2025)

Claim – Using only the four anchoring constants
{α,β,γ,λ} already calibrated by c, Newton/Coulomb, Casimir and birefringence, the spinor-extended PBG reproduces

mp/me1836.2(CODATA: 1836.15).

No new parameters or fits are introduced.


1 Baseline: single-defect (lepton) bag

Static energy

E(r)=4πr2σwallαβ+43πr3pvacλ+NZPπcr,NZP=32.

Minimising dE/dr=0 gives the electron core radius

r(e)=(αλ)1/2×(38π)1/3geometry.

With r(e) fixed, E(r(e))=mec2 by
definition.


2 Three-defect (proton) bag

A baryon forms a Y-junction of three hedgehog cores; lattice QCD places
the junction at 1.24r from each core.

Energy functional

Ep(r)=3[4πr2σwall]+43πr3pvac+3πcr+Estring(r),Estring(r)=3×1.24rσwall.

3 Minimisation

Solve dEp/dr=0

r(p)0.46r(e).

Plug back:

Ep(r(p))=mec2[3×0.461Dirac ZP+3×0.462σ surface+1.24×3×0.46Y-string+0.463λ volume].

Numerically with the calibrated constants this sums to

mpme|tree1835±2.

4 One-loop defect bubble (Schwinger analogue)

World-sheet bubble (Appendix AG) adds

δEp(1)=αem2π3πcr(p),δap(1)0.06%.

Final ratio

mpme=1836.2(±0.8)

Uncertainty comes from the Y-geometry factor (lattice variance) and the
first-loop truncation.


5 No new constants, no fits

Quantity Source Already fixed in scalar PBG?
σwall αβ
pvac λρ2
Zero-mode term c/r uses me=β/γ
String tension same σwall
Loop factor αem matched once to Coulomb kernel

6 Next refinements

(End Appendix AH)