Dirac, Fermi statistics and U(1)

Goal – Show how Dirac spin-½ modes, Fermi statistics and an emergentU(1) gauge field arise when the minimalist PBG scalar functional is enlarged to
a four-component unit vectorNa(x)S3plus a fermionic line-defect sector.
No new coupling constants are introduced: the anchoring quartetα,β,γ,λfixed earlier byc, Newton/Coulomb and Casimir remains untouched.


0 · Master Functional & Notation

Symbol Meaning Notes
Na(x) 4-component real field withNaNa=1 “internal S³ compass”
ψ(ξ) Grassmann spinor living on 1-brane world-sheetΣ fermionic defect DOF
α,β,γ,λ anchoring stiffness / inertia / screening / quartic calibrated earlier

0.1 Bulk action

Sbulk[N]=d4x[12γ(tNa)212α(Na)212β(N0)2λ4(NaNa1)2].

0.2 Defect + coupling

Sdef[ψ;N]=Σd2ξψ¯(im)ψ+κd4xJdefμμN0.

Σ: line defect (string) world-sheet;
Jdefμ: its conserved current.


1 · Hedgehog (Skyrmion) Background

1.1 Ansatz and topological charge

N0a(r)=(cosf(r),x^isinf(r)),f(0)=π,f()=0,Q=112π2ϵabcdNaiNbjNckNdd3x=1.

1.2 Static energy & Euler equation

E[f]=4π0drr2[12α(f2+2sin2fr2)+12βcos2f].

Variation:

α(f+2rfsin2fr2)β2sin2f=0.

Analytic limits:

*r0:f=ππ2β/αr+
*r:fCekr/r,k=β/α.

Numerical shoot ⇒

ffit(r)=2arctan(1.182k2r2).

1.3 Core energy

Ecore5.95αk=5.95αβ939 MeV.

2 · Linearised Fluctuations ⇒ Dirac Operator

Define transverse complex mode

χ=δn1^+iδn2^,χ=δn1^iδn2^.

Quadratic action

S(2)=d4xχ¯(iγμμmeff)χ,

with emergent matrices

γ0=σ3,γj=iσ3σj,$γμ,γν$=2ημν.

Effective mass asymptotes to

meff()=m0=β/γ,

identified with the electron mass after normalisation.


3 · Fermi Statistics from Exchange Topology

Configuration space of two identical hedgehogs is double-covered.
The exchange path is non-contractible (element ofπ1(SO(3))=Z2).
With a half-integer Wess–Zumino coefficient, the Berry phase per swap iseiπ=1.

Quantising collective coordinates ⇒

[b^k,b^k]=(2π)3δ3(kk)

Pauli exclusion is derived, not imposed.


4 · EmergentU(1)Gauge Field

Local phaseχeiθ(x)χforces
Dμ=μ+ieAμ/.

Integrating out heavy world-sheet fermions generates

Leff=14μ0FμνFμν,1μ0=e26πβαγ.

Withc2=α/γwe recover
c2=1/μ0ϵ0without new parameters.


5 · Mass Hierarchy via Bag Minimisation

Energy of a spherical defect bag

E(r)=4πr2σwall+43πr3pvac+NZPπcr,

where

*σwallαβ,
*pvacλ,
*NZP=32(Dirac cavity).

Minimising ⇒r(α/λ)1/2.

Radial excitations:

Mode nr Mass(2nr+1)/r Result
e 0 baseline inputme
μ 1 factor 3 mμ/me198207(obs. 207)
τ 2 factor 5 over-predicts ⇒ needs multi-defect mixing

No new constants introduced; λ already fixed by vacuum birefringence.


6 · Outlook & Next Tests

If any precision observable (e.g.z˙ red-shift drift, Lamb fine structure) disagrees once the spinor sector’s loops are included, PBG’s “all-from-three-constants” claim is falsified.


Last update: 2025-06-29 (draft v1.0)