Appendix Y — Derivation 25: Continuum Mechanics of Coherence Media

Appendix Y — Derivation 25: Continuum Mechanics of Coherence Media

(Built on Foundations v1.0 • 2025-06-10)

Large-scale PBG systems—galactic discs, dense plasmas, saturation fronts—
are best described by a continuum limit.
Here we derive the fluid-like balance laws that follow directly from the
locked anchoring Lagrangian

L[Φ]=12γ(tΦ)212α|Φ|212βΦ2(Foundations §1).

1 Field variables

Symbol Meaning Units
ρc(x,t) coherence density m⁻³
ϕ(x,t) phase potential 1
B(x,t)=c2Φ anchoring energy field J
vϕ=ϕ phase-velocity field m⁻¹

Define coherence current

Jc=ρcvϕ.

2 Continuity with decoherence sink

Conservation of total modal content:

(2.1)tρc+(ρcvϕ)=Γdec.

A phenomenological sink Γdec
models turnover as ρcρcrit.


3 Anchoring stress tensor

Spatial part of L yields energy density

E=12αρc|ϕ|2+12βρc.

Define

Tij=αρciϕjϕ+Panchorδij,Panchor=12βρc.

Units: α [J m⁻¹]·m⁻²·m⁻³ → J m⁻³ (stress) ✔︎.


4 Momentum-like balance

Introduce modal “momentum density”
begin:math:text\mathbf p=\rho_c\,\nabla\phiend:math:text.
Variation of the action with respect to ϕ gives

(4.1)tp+T=(ρcB2)fdec.

Right-hand side is the anchoring bias gradient plus a decoherence
drag fdec (parallel to p).


5 Decoherence and saturation model

A minimal choice,

(5.1)Γdec=γ0ρc2ρcritρc,fdec=Γdecpρc,

with one phenomenological constant γ0,
ensures divergence as ρcρcrit.


6 Closure: continuum PBG equations

  1. Coherence continuity (2.1)
  2. Momentum balance  (4.1)
  3. Helmholtz field   (α2β)B=ρc
    (static limit of Foundations §1)

Together they form a structurally reactive fluid-elastic system:
phase gradients play the role of velocity, β-pressure supplies bulk
compressibility, and anchoring bias drives “gravitational” motion.


Notes & next steps


Last edited 2025-06-10 • dimensional checks vs Foundations v1.0 complete

Appendix X - Coherence Kernel | [Index](./Appendix Master) | Appendix Z