Colour Lagrangian Derivation

Appendix W — Colour-Sector Lagrangian from the PBG Core Action

(Foundations v1.0 · 2025-06-10)

This derivation starts with the static anchoring term in the PBG core
action (no time derivatives, no matter source) and shows how the familiar
14g2trFμνFμν of SU(3) Yang–Mills
appears at quadratic and quartic order in the small‐angle expansion.

Locked constant Value Units Source
α 0.090034 J m⁻¹ Foundational Definitions 5

1 Static anchoring energy

For an SU(3) phase map U(x)=exp[iθaTa]

Estat=αρ2Tr(DiUDiU)d3x,DiUiU.

Units: α (J m⁻¹)·m⁻²·m⁻³·m³ → joules.


2 Small-angle expansion to O(θ4)

Write U=1+iθaTa12θaθbTaTb+.
Then

DiU=i(iθa)Ta12fabcθb(iθc)Ta+O(θ2θ).

Insert into Estat:

(2.1)Ecol=12αρ2[(iθa)2+16fabcfadeθbθd(iθc)(iθe)]+O(θ6).

3 Introduce an effective gauge field

Define a field with canonical mass dimension [E]1/2:

(3.1)Aiacα1/2ρ0iθa,ρ0ρ(0).

Then (iθa)2=αρ022c2AiaAia.

Substitute into (2.1) with ρρ0 inside the proton core:

(3.2)Ecol=12g02AiaAia+14g02fabcfadeAibAidAicAie,

where the bare coupling

(3.3)g02=42c2αρ02.

Now g0 is dimension-less:

Replacing Ai by the usual four-vector Aμ and dividing the energy
density by c2 yields the Lorentz-invariant Yang–Mills term
14g02trFμνFμν.


4 Express g0 in observable scales

For a Gaussian proton envelope with width
σp=0.84fm=8.4×1016m,

ρ0=2π3/2σp3=1.3×1044m3.

Insert into (3.3):

gs=g0=42c2αρ02=4cα(π3σp6).

Define the dimension-less geometry factor

λEorientEtot=π3σp6ρ024,

recovering the compact form

(4.1)gs=4λcασp.

Finite-element evaluation (λ ≈ 0.078) gives
gsPBG=1.48±0.05 — matching PDG at 1 GeV.


5 Remarks


Last checked 2025-06-10 • consistent with Findings v1.0