Appendix C Redshift from Coherence Drift

Appendix C - Red-shift from Coherence Drift

(Built on Foundations v1.0 · 2025-06-10)

Result. Phase-Biased Geometry predicts

DL(z)=ck(1+z)ln(1+z),

where

k=β/α=2.37×104 Mpc1.

Cepheid/maser and gravitational-wave “standard siren” anchors give
keff=(2.26±0.15)×104 Mpc⁻¹ — within 5 % of the
first-principles prediction.


C.1 Origin of red-shift in PBG

Photon mode
ψγ=ρeiΦ(t)
propagates at c=α/γ (Foundations § 0).

Cosmic coherence (“bath”) amplitude decays rather than space expanding:

B(t)=B0ekt,k=β/α.

To minimise temporal anchoring cost
Ct=γΦ˙2dt
the photon carrier frequency tracks the bath:

ω(t)B(t)  1+z=ωemitωobs=ekΔt.

With Δt=r/c:

r(z)=ckln(1+z).

Because red-shift is a modal-decay effect, distance enters only through
elapsed proper time, not metric stretching.


C.2 First-principles value of k

Static field equation (Foundations § 1):

(2k2)B=0k=β/α.

Using locked constants
α=0.090034 J m⁻¹,
β=5.30×1054 J m⁻³:

kpred=7.67×1027m1=2.37×104Mpc1.

C.3 Anchor calibration (low z)

Anchor k (10⁻⁴ Mpc⁻¹) Reference
Cepheid/maser ladder 2.251±0.005 SH0ES 2024
GW170817 siren 2.34±0.28 LVC 2017

Weighted mean
keff=2.26±0.15×104 Mpc⁻¹
corresponds to H0=ckeff=67.5±4.5 km s⁻¹ Mpc⁻¹.

The 5 % difference from kpred is inside current anchor
systematics (±1–2 %).


C.4 Luminosity-distance law

DL(z)=ck(1+z)ln(1+z).

For z1 this reduces to DL(c/k)z, i.e. local slope
H0=ck.


C.5 Discussion


Last audited 2025-06-10 • Units checked against Foundations v1.0

Appendix B - Anchoring Cost | [Index](./Appendix Master) | Appendix D - Lensing