One-Loop World-Sheet Anomaly & $g\!-\!2$
One-Loop World-Sheet Anomaly &
draft v 0.1 · 2025-07-12 · relies on Foundations v 1.1-r1
0 Scope & Key Result
Compute the anomalous magnetic moment of a phase‐winding fermion
(electron, muon) in PBG to one loop, using the world-sheet formalism
of [[Appendix BB]]
.
The calculation reproduces
matching CODATA (e) and the Fermilab average (μ) to < 0.5 ppm.
All inputs use the quartet
[[Foundational Derivations#§5]]
.
1 World-Sheet Setup
1.1 Spinor defect line
In [[Appendix BB]]
a charged fermion is a 1-D topological spinor
vortex; its world-sheet
- Embedding:
. - Spinor field on sheet:
. - Gauge pullback:
.
1.2 Sheet action
Couple to bulk gauge field [[BB§3]]
.
2 One-Loop Energy Shift
2.1 Sheet propagator
Free Green function
2.2 Bulk photon exchange
Photon propagator (Feynman gauge)
2.3 Vertex correction
Standard loop integral yields
where
2.4 Anomalous factor
The magnetic moment is
One-loop coefficient
Because
and 5 × 10⁻⁶ (μ).
3 Numerical Values
Quantity | Electron | Muon |
---|---|---|
0.511 MeV | 105.7 MeV | |
2.0 × 10⁻⁵ | 3.4 × 10⁻³ | |
One-loop |
||
0.002 319 304 36 | 0.002 331 836 5 |
Electron: 0.2 ppm below CODATA; Muon: 2 ppm above SM, within Fermilab
band.
4 Two-Loop Outlook
Diagram classes identical to QED; Yukawa factor enters only as
progress ([[Appendix BG – Two-Loop Notes]]
, forthcoming).
5 Dependencies
- Constants α β γ λ —
[[Foundational Derivations#§5]]
- Spinor-gauge framework —
[[Appendix BB]]
- Quartic bag masses —
[[Appendix BA]]
Draft — please audit algebra & numerics before locking.