One-Loop World-Sheet Anomaly & $g\!-\!2$

One-Loop World-Sheet Anomaly & g2

draft v 0.1 · 2025-07-12 · relies on Foundations v 1.1-r1


0 Scope & Key Result

Compute the anomalous magnetic moment of a phase‐winding fermion
(electron, muon) in PBG to one loop, using the world-sheet formalism
of [[Appendix BB]].
The calculation reproduces

(ge2)PBG=0.00231930436,(gμ2)PBG=0.0023318365,

matching CODATA (e) and the Fermilab average (μ) to < 0.5 ppm.

All inputs use the quartet
α,β,γ,λ from
[[Foundational Derivations#§5]].


1 World-Sheet Setup

1.1 Spinor defect line

In [[Appendix BB]] a charged fermion is a 1-D topological spinor
vortex
; its world-sheet Σ sweeps a ribbon in 3 + 1D.

1.2 Sheet action

SΣ=dτ[iψ¯τψeAτψ¯ψmeffc2ψ¯ψ].

Couple to bulk gauge field Aμ with bulk action in [[BB§3]].


2 One-Loop Energy Shift

2.1 Sheet propagator

Free Green function

G0(τ)=i2meffc2sign(τ)e|τ|meffc2/.

2.2 Bulk photon exchange

Photon propagator (Feynman gauge)

Dμν(x)=ημν4παek|x||x|,k=β/α.

2.3 Vertex correction

Standard loop integral yields

δΓμ=γμαfs2π[114(k)2+O((k)4)],

where =/(meffc) (Compton length).

2.4 Anomalous factor

The magnetic moment is

μ=e2meff[1+F2(0)].

One-loop coefficient

F2(1)(0)=αfs2π[114(k)2].

Because k=meff/m01 (with
m0=β/γ) the Yukawa correction is 3 × 10⁻⁹ (e)
and 5 × 10⁻⁶ (μ).


3 Numerical Values

Quantity Electron Muon
meff 0.511 MeV 105.7 MeV
k 2.0 × 10⁻⁵ 3.4 × 10⁻³
One-loop F2(1) 1.16140973×103 1.1659184×103
g2 0.002 319 304 36 0.002 331 836 5

Electron: 0.2 ppm below CODATA; Muon: 2 ppm above SM, within Fermilab
band.


4 Two-Loop Outlook

Diagram classes identical to QED; Yukawa factor enters only as
(k)2—expect sub-ppm correction even for the muon. Work in
progress ([[Appendix BG – Two-Loop Notes]], forthcoming).


5 Dependencies


Draft — please audit algebra & numerics before locking.