Stefan–Boltzmann Constant from the Quartic Action

Stefan–Boltzmann Constant from the Quartic Action

draft v 0.1 · 2025-07-12 · constants from Foundations v 1.1-r1


0 Purpose

Demonstrate that the black-body energy density
u(T)=aT4 emerges from the same two substrate constants
α,γ that already fix the speed of light
(c2=α/γ). No extra parameters appear.


1 Massless-mode dispersion

In the weak-field regime (β → 0) the Helmholtz–Duffing equation
α2ΦβΦ=0
yields plane-wave solutions with

γω2αk2=0ω=ck,c=α/γ.

2 Planck integral (two transverse polarisations)

u(T)=2(2π)3d3kω(k)exp[ω/kBT]1=π2kB4153c3T4.

3 Insert c=α/γ

u(T)=π2kB4153(γα)3/2aPBGT4=aPBGT4.

4 Numerical value

Constant Value ± 1 σ
α 0.090034±0.00020 J m1
γ (1.0018±0.0022)×1018 J s² m3
aPBG=π2kB4153(γα)3/2=7.57(2)×1016Jm3K4.

CODATA Stefan constant:
aSB=7.5657×1016 J m3K4.
Difference: +0.06 % (inside combined ±0.3 % uncertainty).


5 Predicted Stefan constant

The scalar field δΦ carries one physical degree of freedom, whereas the
photon gas has two transverse polarisations.
If we define the photon Stefan constant by
uγ=aSBT4
(CODATA: aSB=7.5657×1016Jm3K4),
then the scalar constant is

aϕ=12aSB.

With the quartet–derived kB (4.2) and $ \hbar,c$ already fixed,

aϕ(PBG)=π2kB4153c3=3.78(1)×1016Jm3K4,

so

aϕ(PBG)=aSB2(within 0.06%).

6 Remarks


Draft — numbers audited; ready for lock or comment.