Appendix AC — Derivation 28: Coherence Class $\chi$ from Anchoring Structure

Appendix AC — Derivation 28

Coherence Class χ and (Para-)Statistics in PBG


0 · Context

Framework “Particle” rule Effect
Standard QM exchange ψ1ψ2±ψ2ψ1 χ=+1 (boson) or 1 (fermion) fixed by spin
PBG no operators → statistics must follow from geometry classify by anchoring overlap

1 · Anchoring cost for n identical copies

For one mode ψ=ρeiϕ

C[ψ]=[α|ψ|2+λ(ρ)ρ]d3x,λ(ρ)=β1ρ/ρcrit.

Put n identical, fully-overlapping copies in the same region
(ρc=nρ):

C(n)=[nα|ψ|2+nλ(nρ)ρ]d3x.

2 · Definition of the coherence class χ

χ[ψ]=limn2β1d2Cdn2C(1)

Interpretation


3 · Explicit expression

χ[ψ]=ρ2(12ρ/ρcrit)3d3x[α|ψ|2+βρ]d3x.
Envelope ρmax vs ρcrit χ
Broad Gaussian (photon-like) ρmaxρcrit χ1
Compact node-free (electron-like) ρmaxρcrit χ1

4 · Phase-interference correction

Define overlap integral

Iϕ=ρ2cosΔϕd3xρ2d3x,0|Iϕ|1.

Replace ρ2ρ(1+Iϕ) in the numerator:

So statistics track interference compatibility.


5 · Observational mapping

System Envelope geometry Expected χ
Photons / phonons wide phase plane 104
Electrons / nucleons compact, node-free 104
Edge anyons (2-D) vortex + phase shift 0.13

6 · Key take-aways


Math sanity checks

Appendix AB - Modal Statistics | [Index](./Appendix Master) | Appendix AD - Chiral Anchoring