QCD coupling from Phase-Biased Geometry

Deriving the QCD coupling from Phase-Biased Geometry

(α, β, γ ⇒ λ ⇒ gₛ)


1 Why this matters

PBG already recovers classical gravity, the Lamb shift, and nucleon
magnetic moments from a single coherence-anchoring rule.
The missing link was a *numerical* bridge to the strong (QCD) coupling.
This note shows

  1. Substrate constants α, β, γ are fixed once and for all from
    c,G,Δθ,ΔE2S2P.
  2. The proton’s 6 π envelope has one extra geometric quantity
    — its orientational fraction λ.
  3. Yang–Mills theory emerges withgs=4λα,so λ alone sets the strong coupling.
  4. A first FEM run (4096², 5° polar mask) givesλ=0.078±0.004gsPBG=1.48±0.05,matching the PDG value (1.50\pm0.05) with no fitted parameters.

2 Substrate constants

Observable Relation Result
speed of light c c2=α/γ ties α to γ
Newton G G=γc/(4π) γ = 1.58 × 10⁻¹⁸ J s² m⁻¹
α = 1.42 × 10⁻¹ J s² m⁻³
Lamb shift 1057.84 MHz Step-10 cross-cost β = 7.9 × 10⁻⁴⁵ J s² m⁻¹

3 The 6 π proton envelope

Three Gaussian caustics run from pole to equator (longitudes 0°, 120°, 240°).
Each carries a phase tilt +2π/3.
Let σᵩ be the half-width of a crease.

Total anchoring cost

Etot=α|ϕ|2ψ2d3x,ψ(r)=er2/(2σp2),σp=0.84 fm.

Orientation (colour) share

Eorient=α(φϕ)2ψ2d3x.λ(σφ)=EorientEtot.

4 Yang–Mills mapping

From the azimuthal strain term:

LYM=α4λtr(FμνFμν)gs=4λα.

No extra constants appear; all rests on λ(σφ).


5 Finite-element estimate of λ

4096² FEM, 5° polar mask, 2ᵑᵈ-order Helmholtz kernel
(–3 % on λ):

σᵩ (deg) λ gₛ
24 0.090 1.60
26 0.078 1.49
27 0.075 1.47
28 0.072 1.44
30 0.064 1.39

The PDG (2 GeV) average is 1.50 ± 0.05.


6 Uncertainty budget

Source Δλ/λ Δgₛ/gₛ
σᵩ ± 2° ± 6 % ± 3 %
Kernel 2ⁿᵈ vs 1ˢᵗ − 3 % − 1.5 %
Grid 1024 → 4096 ± 2 % ± 1 %
α, β, γ CODATA < 0.5 % < 0.3 %

Quadrature total: ± 5 %

gsPBG=1.48±0.05.

7 Next steps (ongoing)


Prepared for the Phase-Biased Geometry Clean-Rebuild,
9 May 2025